Centralized Monitoring System for Covid ICU at CGH

Presented by:

MD. Hedayetul Islam Chy. ID No. : 17702013 Dept. of EEE, CU

Supervised by:

Dr. Mohammed Arif Iftakher Mahmood Associate Professor Dept. of EEE,CU

Outline

- Introduction
- Current status
- O Motivation
- Methodology
- System Architecture
- O Backend-work
 - Image Acquisition
 - Data Analysis
 - Server Process
 - Straightened Image
 - Segmentation
 - Color-based
 - Pixel-based

OCR

- O 3D design
- Implementation at CGH
- Application
- O Conclusion
- O Future work

Introduction

- Inside covid-ICU, Hospital personnel has to stay close to the covid infected patients for continuous checkups.
- Bedside monitor in ICU shows data of
 - Heart rate,
 - Oxygen saturation,
 - blood pressure, etc. of a patient.
- Doctors and hospital staff must need to monitor this information consecutively.
- Due to covid, barely possible to inspect the patient in this condition.
- Lack of PPE and other protective equipment systems made the situation worse.

Current status

- Waste of Protective equipment
- Need to pay for central monitoring software and licensing (CMSL).
 - e.g. In CGH, for setup a 10 bed ICU CMSL fee of ~17,000 USD
- Can't take data from the outgoing sensor signal because-
 - No right to access those devices
 - Again need to implement a new infrastructure

Motivation

- Reduce virus exposure among the hospital personnel's
- A system that allows images and data from ICU bedside monitor to be displayed on a web page
- Alert if the patient's condition is critical
- A fully wireless system
- Easily deployable to any ICU
- Economical and easy to use

How?

Develop a local server that shows all bedside monitors image on the webpage and reduce contact with covid infected patients and hospital personnel's

Methodology

Android Application

System Architecture

Figure: Overview of the system

Entire process

Backend: Image Acquisition

Figure HTTP image post using Esp-32 cam flowchart

Backend: Image Acquisition

Figure: TTGO camera plus display (a)Searching network to connect, (b)Display camera for 30 seconds, (c)Start sending image to server after 30 sec.

Esp-32 cam: Data analysis

Distance From CAM	Min(ms)	Average(ms)	S.D.(ms)
0-8 feet	322.38	425.23	176.4997
8-16feet	345.125	593.03	415.9217
16-20feet	382.5	906.8	743.87
20-24feet	333.13	1556.35	1306.12
25+feet with external antenna	111	389.27	684.5

Without antenna ~15,000 image

٠

• With antenna ~26,000 image

Data analysis chart

Cam Distance from router

Backend: Server process

Figure: Flask Server flowchart

Backend: Straightened Image

Contour Approximation

Backend: Straightened image

Figure: (a) Original Image, (b)Threshold Image, (c) Canny edge detection, (d)Get the big rectangle contour from canny edged image, (e) Final Image

Visual performance of Straightened image

Backend: Segmentation (Pixel-based)

Pixel-based Segmentation

Preprocessing

- Resize Image
- BGR to Gray conversion
- Thresholding operation
- Blur filter

Contour Approximation

- Morphological Transformation
- Find Contours
- Remove Small pixel

(a)Original Image

(b)Crop and resized image

(c) Threshold image

(d) Final Image

Backend: Segmentation (Color-based)

(a)Original Image

(b)Masking green

(c) Masking Blue

(d) Final Image

OCR

 Using pytesseract library to get the list of data from images

Heart Rate = 80 Oxygen Saturation = 98

Heart Rate = 73 Oxygen Saturation = 73

Heart Rate = 59 Oxygen Saturation = 59

Web Interface

Developed by-EEE,CU.

Figure: Web interface (Counting time)

Android App Interface

Figure: (a)Intro (b)Choose section, (c)Heart rate interface, (d)Oxygen Saturation Interface

3D design

Figure: Clamp Design

Implementation at CGH

Floor plan of CGH covid ICU

Inside ICU room

Doctors Room*

* Image with Doctor Moumita Das, Junior Consultant, CGH

Application

- Plug and play system, easy to operate.
- Can be operated without the help of an expert.
- Well suited for Covid-ICU to monitor their patients' conditions 24/7.

Conclusion

- Hospital personnel can monitor patients' status from non-covid space.
- O Wireless system
- Unconditional changes of the patient will warn via the system.

Future Work

- Remotely usable for the client using MQTT protocol
- Secure dynamic web hosting
- O Creating pyGUI

Thank You!

For Your Attention

