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Introduction
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 Inside covid-ICU, Hospital personnel has to stay close to the 

covid infected patients for continuous checkups.

 Bedside monitor in ICU shows data of 

 Heart rate,

 Oxygen saturation,

 blood pressure, etc. of a patient.

 Doctors and hospital staff must need to monitor this information 

consecutively. 

 Due to covid, barely possible to inspect the patient in this 

condition.

 Lack of PPE and other protective equipment systems made the 

situation worse.



Current status

 Waste of Protective equipment

 Need to pay for central monitoring 

software and licensing (CMSL). 

 e.g. In CGH, for setup a 10 bed ICU 

CMSL fee of ~17,000 USD

 Can’t take data from the outgoing sensor 

signal because-

 No right to access those devices

 Again need to implement a new 

infrastructure
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Motivation

 Reduce virus exposure among the hospital personnel’s

 A system that allows images and data from ICU bedside 

monitor to be displayed on a web page

 Alert if the patient’s condition is critical

 A fully wireless system

 Easily deployable to any ICU

 Economical and easy to use
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How?

◼ Develop a local server that shows all bedside monitors image on 

the webpage and reduce contact with covid infected patients 

and hospital personnel’s
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Methodology
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Local Server

(Raspberry pi)

Image Acquisition

(TTGO camera plus)

Webpage

Android Application



System Architecture
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ESP-32 

Camera

Raspberry pi unit (local 

server)

HTTP Post

Request every

second

Get  the time 

image captured

Straightened 

the image

Extract Data from image and 

save it to database for further 

analysis

Display images and time 

on a webpage

Figure: Overview of the system



Entire process
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Data analysis

Android Application

Remote client

Image acquisition

Server Process

Image Processing



Backend: Image Acquisition
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Include all ESP-32 camera 

Additional library

Include all ESP-32 camera 

Additional library

Add network credentialsAdd network credentials

WIFI and 

camera module 

Connected?

WIFI and 

camera module 

Connected?

Restart ESPRestart ESP

Stream in TFT display for 30 

second

Stream in TFT display for 30 

second

Capture image and HTTP 

post to server

Capture image and HTTP 

post to server

Posting 

image time 

less than 5 

sec?

Posting 

image time 

less than 5 

sec?

Image send perfectly. Take a 

break for 1 sec

Image send perfectly. Take a 

break for 1 sec

No

No

Yes

Yes

Figure HTTP image post using Esp-32 cam flowchart

Fig: ESP-32 cam 

(TTGO camera Plus)



Backend: Image Acquisition
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(a) (b) (c)

Figure: TTGO camera plus display (a)Searching network to connect, 

(b)Display camera for 30 seconds, (c)Start sending image to server after 

30 sec.

Searching for WIFI..

Bed No. 1

Set the camera.. WIFI NAME

RSSI  .

Image Sending…

Bed No. 1



Esp-32 cam: Data analysis
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Distance From  CAM Min(ms) Average(ms) S.D.(ms)

0-8 feet 322.38 425.23 176.4997

8-16feet 345.125 593.03 415.9217

16-20feet 382.5 906.8 743.87

20-24feet 333.13 1556.35 1306.12

25+feet with external antenna 111 389.27 684.5

• Without antenna ~15,000 image

• With antenna ~26,000 image



Data analysis chart
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Backend: Server process
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HTTP Get Images and 

save  to a custom 

path

HTTP Get Images and 

save  to a custom 

path

Get Date and time
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Get Date and time

& start counting
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Is image
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Data
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and
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Send to webpageSend to webpage
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Yes
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Figure: Flask Server flowchart



15

PreprocessingPreprocessing SegmentationSegmentation
Contour 

Approximation

Contour 

Approximation

• Resize Image

• Grayscale 

Conversion

• Apply gaussian 

blur/ median blur

• Binary conversion

• Canny Edge Detection

• Morphological 

transformation

• Erosion

• Dilation

• Calculate the biggest 

contour

• Contour Approximation

• Retransform the 

Rectangle biggest  

contour

• Resize image

Backend: Straightened Image



Backend: Straightened image

(a) (b) (c)

(d) (e)

Figure: (a) Original Image, (b)Threshold Image, (c) Canny edge 

detection, (d)Get the big rectangle contour from canny edged 

image, (e) Final Image



Visual performance of Straightened image
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Input Image Straightened 

Image

Input Image Straightened 

Image



Backend: Segmentation (Pixel-based)
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Preprocessing

• Resize Image

• BGR to Gray conversion

• Thresholding operation

• Blur filter

Contour Approximation

• Morphological Transformation

• Find Contours

• Remove Small pixel

Pixel-based Segmentation

Pixel-Based

(a)Original Image (b)Crop and resized 

image

(c) Threshold image (d) Final Image
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Backend: Segmentation (Color-based)

Preprocessing

• Resize Image

• HSV conversion

• Thresholding 

operation

Masking Individual color

• Color selection

• Gray scale Conversion

• Calculate threshold value 

using image intensity

• Conversion to Binary

Contour Approximation

• Find Contours

• Remove Small pixel

• Morphological 

transformation

Color-based Segmentation

Color-Based

(a)Original Image (b)Masking green (c) Masking Blue (d) Final Image



OCR

o Using pytesseract 

library to get the list of 

data from images
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Web Interface

21

Figure: Web interface (Counting time)



(a) (b) (c) (d)

Figure: (a)Intro (b)Choose section, (c)Heart rate interface, (d)Oxygen 

Saturation Interface

Android App Interface
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3D design
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Figure: TTGO Camera Case

Figure: Clamp Design



Implementation at CGH
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Floor plan of CGH covid ICU

Inside ICU room

Doctors Room*

* Image with Doctor Moumita Das, Junior Consultant, CGH



Application

 Plug and play system, easy to operate.

 Can be operated without the help of an expert.

 Well suited for Covid-ICU to monitor their patients' conditions 

24/7. 
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Conclusion
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 Hospital personnel can monitor patients’ status from non-covid 

space.

 Wireless system

 Unconditional changes of the patient will warn via the system.



Future Work

 Remotely usable for the client using MQTT protocol

 Secure dynamic web hosting

 Creating pyGUI
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For more please visit  http://stellarbd.com/icu

http://stellarbd.com/icu


Thank You!
F o r  Y o u r  A t t e n t i o n
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