
Centralized Monitoring

System for Covid ICU at

CGH

Presented by:

MD. Hedayetul Islam Chy.

ID No. : 17702013

Dept. of EEE, CU

Supervised by:

Dr. Mohammed Arif Iftakher Mahmood

Associate Professor

Dept. of EEE,CU

Outline

 Introduction

 Current status

 Motivation

 Methodology

 System Architecture

 Backend-work

 Image Acquisition

 Data Analysis

 Server Process

 Straightened Image

 Segmentation

 Color-based

 Pixel-based

 OCR

2

 3D design

 Implementation at CGH

 Application

 Conclusion

 Future work

Introduction

3

 Inside covid-ICU, Hospital personnel has to stay close to the

covid infected patients for continuous checkups.

 Bedside monitor in ICU shows data of

 Heart rate,

 Oxygen saturation,

 blood pressure, etc. of a patient.

 Doctors and hospital staff must need to monitor this information

consecutively.

 Due to covid, barely possible to inspect the patient in this

condition.

 Lack of PPE and other protective equipment systems made the

situation worse.

Current status

 Waste of Protective equipment

 Need to pay for central monitoring

software and licensing (CMSL).

 e.g. In CGH, for setup a 10 bed ICU

CMSL fee of ~17,000 USD

 Can’t take data from the outgoing sensor

signal because-

 No right to access those devices

 Again need to implement a new

infrastructure

4

Motivation

 Reduce virus exposure among the hospital personnel’s

 A system that allows images and data from ICU bedside

monitor to be displayed on a web page

 Alert if the patient’s condition is critical

 A fully wireless system

 Easily deployable to any ICU

 Economical and easy to use

5

How?

◼ Develop a local server that shows all bedside monitors image on

the webpage and reduce contact with covid infected patients

and hospital personnel’s

6

Develop

Image

Processing

algorithm

Develop

Image

Processing

algorithm

Field TestField Test

Develop

ESP-32 Cam

microcontroller

algorithm

Configure

backend

server

Methodology

7

Local Server

(Raspberry pi)

Image Acquisition

(TTGO camera plus)

Webpage

Android Application

System Architecture

8

ESP-32

Camera

Raspberry pi unit (local

server)

HTTP Post

Request every

second

Get the time

image captured

Straightened

the image

Extract Data from image and

save it to database for further

analysis

Display images and time

on a webpage

Figure: Overview of the system

Entire process

9

Data analysis

Android Application

Remote client

Image acquisition

Server Process

Image Processing

Backend: Image Acquisition

10

Include all ESP-32 camera

Additional library

Include all ESP-32 camera

Additional library

Add network credentialsAdd network credentials

WIFI and

camera module

Connected?

WIFI and

camera module

Connected?

Restart ESPRestart ESP

Stream in TFT display for 30

second

Stream in TFT display for 30

second

Capture image and HTTP

post to server

Capture image and HTTP

post to server

Posting

image time

less than 5

sec?

Posting

image time

less than 5

sec?

Image send perfectly. Take a

break for 1 sec

Image send perfectly. Take a

break for 1 sec

No

No

Yes

Yes

Figure HTTP image post using Esp-32 cam flowchart

Fig: ESP-32 cam

(TTGO camera Plus)

Backend: Image Acquisition

11

(a) (b) (c)

Figure: TTGO camera plus display (a)Searching network to connect,

(b)Display camera for 30 seconds, (c)Start sending image to server after

30 sec.

Searching for WIFI..

Bed No. 1

Set the camera.. WIFI NAME

RSSI .

Image Sending…

Bed No. 1

Esp-32 cam: Data analysis

12

Distance From CAM Min(ms) Average(ms) S.D.(ms)

0-8 feet 322.38 425.23 176.4997

8-16feet 345.125 593.03 415.9217

16-20feet 382.5 906.8 743.87

20-24feet 333.13 1556.35 1306.12

25+feet with external antenna 111 389.27 684.5

• Without antenna ~15,000 image

• With antenna ~26,000 image

Data analysis chart

13

425.23

593.03

906.8

1556.35

389.27

0-8 feet 8-16feet 16-20feet 20-24feet 25+feet with
external antenna

H
T

T
P

 P
O

S
T

 im
a

g
e

 T
im

e
 (

m
s)

Cam Distance from router

Average

Backend: Server process

14

HTTP Get Images and

save to a custom

path

HTTP Get Images and

save to a custom

path

Get Date and time

& start counting

Get Date and time

& start counting

Send to webpageSend to webpage

Is image

straighte

ned?

Is image

straighte

ned?

Run on

Data

extraction

Script

Run on

Data

extraction

Script

Save Data to

Sqlite3

database

Save Data to

Sqlite3

database

Query HR and SpO2

Data

Query HR and SpO2

Data

Query data

and

send as JSON

format

Query data

and

send as JSON

format

Show on Chart

Webpage

Show on Chart

Webpage

Send to webpageSend to webpage

Run on angle.py

script

Run on angle.py

script

Send to webpageSend to webpage

Send to webpageSend to webpage

Yes

Yes

No

Figure: Flask Server flowchart

15

PreprocessingPreprocessing SegmentationSegmentation
Contour

Approximation

Contour

Approximation

• Resize Image

• Grayscale

Conversion

• Apply gaussian

blur/ median blur

• Binary conversion

• Canny Edge Detection

• Morphological

transformation

• Erosion

• Dilation

• Calculate the biggest

contour

• Contour Approximation

• Retransform the

Rectangle biggest

contour

• Resize image

Backend: Straightened Image

Backend: Straightened image

(a) (b) (c)

(d) (e)

Figure: (a) Original Image, (b)Threshold Image, (c) Canny edge

detection, (d)Get the big rectangle contour from canny edged

image, (e) Final Image

Visual performance of Straightened image

17

Input Image Straightened

Image

Input Image Straightened

Image

Backend: Segmentation (Pixel-based)

18

Preprocessing

• Resize Image

• BGR to Gray conversion

• Thresholding operation

• Blur filter

Contour Approximation

• Morphological Transformation

• Find Contours

• Remove Small pixel

Pixel-based Segmentation

Pixel-Based

(a)Original Image (b)Crop and resized

image

(c) Threshold image (d) Final Image

19

Backend: Segmentation (Color-based)

Preprocessing

• Resize Image

• HSV conversion

• Thresholding

operation

Masking Individual color

• Color selection

• Gray scale Conversion

• Calculate threshold value

using image intensity

• Conversion to Binary

Contour Approximation

• Find Contours

• Remove Small pixel

• Morphological

transformation

Color-based Segmentation

Color-Based

(a)Original Image (b)Masking green (c) Masking Blue (d) Final Image

OCR

o Using pytesseract

library to get the list of

data from images

20

Web Interface

21

Figure: Web interface (Counting time)

(a) (b) (c) (d)

Figure: (a)Intro (b)Choose section, (c)Heart rate interface, (d)Oxygen

Saturation Interface

Android App Interface

22

3D design

23

Figure: TTGO Camera Case

Figure: Clamp Design

Implementation at CGH

24

Floor plan of CGH covid ICU

Inside ICU room

Doctors Room*

* Image with Doctor Moumita Das, Junior Consultant, CGH

Application

 Plug and play system, easy to operate.

 Can be operated without the help of an expert.

 Well suited for Covid-ICU to monitor their patients' conditions

24/7.

25

Conclusion

26

 Hospital personnel can monitor patients’ status from non-covid

space.

 Wireless system

 Unconditional changes of the patient will warn via the system.

Future Work

 Remotely usable for the client using MQTT protocol

 Secure dynamic web hosting

 Creating pyGUI

27

For more please visit http://stellarbd.com/icu

http://stellarbd.com/icu

Thank You!
F o r Y o u r A t t e n t i o n

28

	Slide 1: Centralized Monitoring System for Covid ICU at CGH
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Current status
	Slide 5: Motivation
	Slide 6: How?
	Slide 7: Methodology
	Slide 8: System Architecture
	Slide 9: Entire process
	Slide 10: Backend: Image Acquisition
	Slide 11: Backend: Image Acquisition
	Slide 12: Esp-32 cam: Data analysis
	Slide 13: Data analysis chart
	Slide 14: Backend: Server process
	Slide 15: Backend: Straightened Image
	Slide 16: Backend: Straightened image
	Slide 17: Visual performance of Straightened image
	Slide 18: Backend: Segmentation (Pixel-based)
	Slide 19: Backend: Segmentation (Color-based)
	Slide 20: OCR
	Slide 21: Web Interface
	Slide 22: Android App Interface
	Slide 23: 3D design
	Slide 24: Implementation at CGH
	Slide 25: Application
	Slide 26: Conclusion
	Slide 27: Future Work
	Slide 28

